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1 Introduction  

Image super resolution is having limitations such as unknown downgrading, LR-HR images 

missing paired. Real world images do have problem of downgrading like blurring, additive noise 

and compression artefacts. Compression artefacts are nothing but distortion of media due to lossy 

compression application. In real-world image scenarios often performs poorly with models trained 

on datasets conducted manually. To overcome these limitations some work [2-5] has been 

proposed. Still there are some drawbacks in these studies, which will result in difficulty in training 

and over-perfect assumptions. In fact, it is propitious decision for specific domains, like intelligent 

surveillance, remote sensing, object tracking, scene rendering and medical imaging to apply SR. 

 
 

Fig. 1. Existing Super-Resolution Techniques 

Images with higher resolution need upgraded hardware. With recent development in imaging 

devices and techniques we can achieve required high resolution images but with limitations. (i) The 

cost is quite high since the demand for applications is volatile. ii) We can receive fresh high-

resolution photographs but not current low-resolution images in high-resolution. This is why super 

resolution is more flexible and inexpensive. 

LR images are generated by downscaling RGB images manually with the help of various techniques 

such bicubic down sampling to train SR models. 

12-bit or 14-bit raw images were captured by camera in reality but due to image signal processors of 

cameras produces 8-bit RGB images which losses lot of original signals and they have different 

features as compared to original images taken by the camera like demosaicing, denoising and 

compression. This is the main reason to use manually downscaled RGB images for SR. Some 

researcher’s doing research to solve this problem. Chen et al. [6] discovered a relationship between 

imaging system field of view and picture resolution (R), using real-world dataset City100 offered 

data collecting methodologies, and got improved results in his proposed image synthesis model. 

Zhang et al. [7] created the real-world picture dataset SR RAW, which consists of paired RAW 

photographs and LR RGB images obtained using camera optical zoom to overcome the 

misalignment problem given by contextual bilateral loss. Xu et al. [8], on the other hand, are 

creating realistic training data by image processing simulation and developing dual CNN to use 

originally obtained radiance information in RAW photos. 

2 Background 

Reverse engineering is done to obtain reconstructed HR images from multiple LR images. This is 

achieved by original Hr image is down-sampled. To get LR images they are Warped, blur, and noise 

added. Super resolution will do exactly opposite up sample, de-blur, then it will add LR images to 

reconstruct HR images. 
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The following equation depicts the degradation of an LR picture (Y) from its matching HR image 

(X). 

Y = DP (X, 𝜃DP)    (1) 

where DP () denotes the degradation process, which is described by the parameter set 𝜃DP. 

 

Fig. 2. (a) Generating LR images from HR (b) Basic premise for SR 

We only have Y i.e., LR image and the degradation parameter𝜃DP is not known,  

SISR recovers desired HR image by inversing the degradation process done in Eq. (1), to get super 

resolved image from Y which is represented by Ŷ which is an estimated real HR image Y as follows, 

Ŷ= SR (Y,𝜃R)    (2) 

where, SR () is the SR function defined by the parameter set 𝜃R, 

Degradation process DP () and SR process SR () were inverses of each other’s. SR (Y, 𝜃R) must be 

transformed to the degradation DP(X,𝜃DP)in order to achieve superior reconstruction performance. 

Simulated degradation process mathematically obtained by following equation, 

Y = SBX + n    (3) 

Where B denotes the blurring operation and s denotes the down sampling procedure. In general, 

blurring is achieved by combining the HR picture with a Gaussian kernel. [1] Assume that n is white 

Gaussian noise. 

Some studies use the basic degradation model with the "bicubic" kernel directly to downscale an 

HR picture to obtain an LR image. SR reconstruction performance on synthetic LR pictures is 

relatively excellent when learning-based SISR techniques such as RCAN [9], SAN [10], and RFANet 

[11] are used. Degradation process is complicated and unstable as it is influenced by various factors 

when it is compared with common degradation models in simulation. The difference between 

synthetic LR photos and genuine LR observations is enormous, resulting in a significant decline in 

the reconstruction performance of most available SISR algorithms using real-world images. To 

address this main limitation, academics have been working on RSISR for several years in a variety 

of approaches, including the provision of realistic datasets, SR performance assessment, and SR 

model development. 

3 Datasets 

This section provides a quick overview of publicly available datasets. Very few datasets consist of 

HR image along with LR images almost all datasets consist of only HR image to train and test 

models. To overcome these challenges more datasets for RSISR have been developed and they are 

listed below. 
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Table 1. DATASETS FOR RSISR 

S. No Datasets Synthetic / 

Realistic 

Scale factors 

1 DIV2KRK[12] Synthetic *2, *4 

2 Real SR [14] Realistic *2, *3, *4 

3 DReal SR [15] Realistic *2, *3, *4 

4 City100 [16] Realistic *2.9, *2.4 

5 SR-RAW [17] Realistic *4, *8 

6 TextZoom [18] Realistic *2 

7 SupER [13] Realistic *2, *3, *4 

8 ImagePairs [18] Realistic *2 

3.1) DIV2KRK [12]: Bell-Kligler et al. [12] built this synthetic testing dataset for blind SR derived 

from DIV2K [61]. It consists of diverse images of 2Kresolution. From the validation set of DIV2K 

[61] 100 HR images were blurred; with V2KRK is more complex and random. 

3.2) RealSR [14]: This real-world dataset was created by Cai et al. [14] for training and evaluating 

RSISR models. It contains 595 LR & HR picture pairings, which were created with two DSLR 

cameras. Cai et al. [14] offer a progressive image registration framework to accomplish pixel wise 

registration of photos taken at 28mm, 35mm, 50mm, and 105mm. After cropping lens distortion 

and interesting portions of rectified photographs in Photoshop, real-world LR-HR image pairings 

may be obtained. 

3.3) DRealSR [15]: Wei et al. [15] built real world dataset DrealSR [15] which is having larger 

scale than RealSR [14]. To capture indoor and outdoor images 5 DSLR cameras were used with 

different resolutions; for alignment these images SIFT [57] algorithm is used. DRealSR [15] consists 

of 884(*2), 783(*3), 840(*4) image pairs of LR & HR. 

3.4) City100 [16]: To characterize resolution of field of view FoV with the use of DSLR and smart 

phones Chen et al. [25] proposed City100 dataset which includes City100, NikonD5500 and 

iPhoneX. There is a counterbalance between the FoV and resolution for imaging system. If we zoom 

out the lens, we will get larger FoV but it is with low resolution. But if we zoom in the lens, we can 

increase the resolution of an image. This is the reason behind adjusting focal length or shooting 

distance by Chen et al. [25]. This lens length is 55mm, with 18mm reserved for HR-LR 

photography. For picture alignment, the SIFT [57] and RANSAC [58] algorithms were applied once 

more. It is done to enhance the accuracy of the intensity and colour correction. 

3.5) SR-RAW [17]: Zhang et al. [17] suggested the SR-RAW dataset, which comprises of several 

levels of optical zoom RAW photos collected for the same scene at various resolutions by varying 

focal length. Seven photographs of each location were captured using a 24-240mm zoom lens. With 

500 sequences, these seven image sequences were recorded in outdoor and indoor situations. 

3.6) TextZoom [18]: The TextZoom dataset was created by Wang et al. [18] using RealSR [14], 

and SR-RAW [16] is the first real scene text SR dataset. The text images in this collection were cut 

from RealSR [14] and SR-RAW [16] photos, which included stores, automobiles, gardens, and 

building interiors. TextZoom [18] is divided into three difficulty levels: easy, medium, and severe. 

TextZoom [18] may be used to examine text image SR as well as text recognition. 

3.7) SupER [13]: K¨ohler et al. [24] developed the SupER dataset by hardware binning. More 

than 80000 photographs were acquired from fourteen lab situations with four imaging resolutions 

and five compression levels using a Basler acA2000-50 gramme CMOS camera with f-1.8, 16mm 

fixed focus lenses. Three levels of resolution and binning factors were employed to create LR 

pictures matching to HR photos in order to achieve precise alignment between HR-LR images. 
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3.8) ImagePairs [18]: ImagePairs [18] was suggested by Joze et al. [18], which comprises 11421 

LR-HR image pairs (LRHRIP) of various scenes acquired by a 5 mega pixel camera (LR) and a 20.1 

mega pixel HR camera. 

To capture same scene images simultaneously with two different cameras a beam splitter cube is 

used. But due to differences in focal length Joze et al. [26] proposed pixel based aligned LRHRIP 

with following 4 steps 

i. ISP Process: In these process first images captured by LR-HR cameras were converted to 

colour images. 

ii. Distortion: Using camera calibrations tangential and radial distortions were reduced. 

iii. Alignment of LR-HR images are done globally and locally.  

iv. Matching accuracy is improved of image pairs 10% of border is removed. As ImagePairs 

[18] includes raw images it should be used for ISP and other tasks. 

4 Assessment Metrics of Image Quality 

4.1) Peak Signal to Noise Ratio (PSNR): Different metrics are employed in image 

restoration for quality evaluation, however PSNR is the most often used statistic for Super 

resolution, denoising, deblocking, and deblurring. 

PSNR = 10. Log10(
𝐋𝟐

𝐌𝐒𝐄
)  (4) 

      MSE is defined as follows, 

MSE = 
𝟏

𝑯𝑾𝑪
‖𝐘 −Ŷ‖

𝟐

𝟐
 

When employing 8-bit representations, L = 255 in most circumstances. 

PSNR is most popular evaluation metric in pixel level MSE. It focuses only on differences 

between corresponding pixels instead of visual perceptions. 

4.2) Structural Similarity Index (SSIM): For quantifying image quality conceptual metric 

is SSIM which measure the difference between two similar images conceptually.  

4.3) Information Fidelity Criterion (IFC) [20]: Based on natural scene statistics the 

quality of images may be assessed by the information fidelity criterion (IFC) [20]. 

Characterization of natural images formed by statistics of the space can be done using 

models like Gaussian Scale Mixture is shown by researchers. Statistics of natural images 

will be disturbed by distortion and it will make unnatural images. Using natural sceneries 

and distortion models, quantify the mutual information between the test picture and the 

reference image to determine image visual quality. Overall, the IFC [20] does a good job of 

assessing the quality of super-resolved pictures [23]. 

4.4) LPIPS [21]: An image's quality is measured by the distance between two MVG models 

that fit natural pictures and assessed images. The learnt metric LPIPS [21] is used for 

referenced based picture quality evaluation. LPIPS is done by discriminating between the 

reference and test pictures in deep feature space, according to human judgments. To fit 

quality-aware features collected from photos, the MVG model is employed. Features such 

as the Generalised Gaussian Distribution (GGD) and Asymmetric Generalised Gaussian 

Distribution (AGGD) parameters are used to characterise the behaviour of image patches. 

4.5) PIQE [22]: The perception-based quality evaluator (PIQE) is a no-reference metric for 

assessing picture quality [22]. By splitting the test picture into non-overlapping chunks, 

block level analysis is utilised to detect distortion and grade quality. The combined block 

level quality scores are used to assess the image's quality. 
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4.6) NRQM [19]: This is a no-reference quality metric (NRQM) that has been learnt for 

evaluating super-resolved pictures [19]. NRQM predicts super-resolved picture perception 

ratings, encompassing global frequency characteristics and spatial details. 

5 Methods and Technologies  

 

 

 

 

 

 

 

 

 

 

Fig. 3. Existing RSISR Methods 

More focus is given to RSISR as the SR performance on synthetic data is giving better results. Fig 2. 

Shows existing RSISR techniques grouped into four categories based on their principles and 

characteristics as degradation modelling- based methods [27]-[37], image pairs-based methods 

[38]-[49], and self-learning-based methods [33], [50]-[56]. 

Self-Learning-based Methods  

 

Fig. 4. Self-learning-based SR method 

For training SR models existing RSISR methods use paired or unpaired training data which is 

external dataset. Viscosity between testing and training data results in tightly bound SR 

performance. The characteristics of real-world image training data are not always consistent. To 

reduce the impact of training testing variance on SR performance, information from the LR input is 

used to build an image-specific SR model, as shown in fig. 4.Shocher et al. [50] created the Zero-

Shot SR (ZSSR), which is based on a common property of natural images, namely cross scale 

internal recurrence of information. During the testing phase, example pairs were extracted from the 

LR test image and its degraded images and used to train image-specific LR HR relations with an 8-

layer CNN. Because the single test picture provides insufficient training data, data augmentation is 

used when extracting image-specific LRHR pairs. ZSSR [50] adapts itself to different testing images 

with unknown and unideal degradation processes in order to achieve excellent SR performance on 

real-world images. Bell-Kligler et al. [33] proposed using the cross-scale recurrency property to 

train an image-specific GAN (Kernel GAN) to model the degradation process (blur kernel) of the 

input. To achieve a fully self-supervised image-specific RSISR framework, the blur kernel 

estimation model KernelGAN [39] was plugged into the reconstruction model ZSSR [50].Kim et al. 

[51] created the DBPI, a unified internal learning-based SR framework that consists of an SR 

network and a downscaling network to train the image-specific degradation and SR networks 

simultaneously. The downscaling network is used in the self-supervised training phase of DBPI to 
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reconstruct the LR picture from its downscaled counterpart, while the SR network is optimised. A 

down scaling network is trained to recover the LR input image from its super resolved form. 

Similarly, Emad et al. [52] proposed DualSR [52], which optimises both the image-specific down 

sampler and the relative upsampler. The DualSR [52] is trained with three losses cycle-consistency, 

masked interpolation, and the adversarial loss using patches from the test image, resulting in [51], 

[52] complementary training of the image specific degradation and SR network that is beneficial to 

the reconstruction framework. 

Self-learning RSISR techniques like ZSSR [50], KernelGAN [33], and DBPI [51] have two major 

drawbacks due to their self-supervised training strategy. I) Despite the fact that bigger scale 

external data is accessible, it is ignored since optimised SR models only employ internal data. II) 

These procedures were time intensive due to the online instruction. Meta-learning is included into 

self-learning-based SR techniques to overcome these limits. Based on ZSSR [50], Soh et al. [53] 

introduced the MZSR (meta-transfer learning for zero-shot SR), which consists of three steps: 

large-scale training, meta-transfer learning, and meta test. 

1) On the big-scale dataset DIV2K [55], large scale training step one trains an 8-layer SR 

network with pixel wise l1 loss to make SR network and meta-learning training easier. 

2) The goal of meta-learning is to establish a general starting point for internal learning by 

using Model-Agnostic Meat-Learning [56], which allows the model to easily adapt to 

changing visual situations with only a few gradient updates. 

3) The input picture is degraded in the met-test phase to provide example pairs for updating 

model parameters, and then it is sent to the modified model to generate the SR result. 

Meta-transfer learning for zero-shot super-resolution [53] outperforms meta-learning-based SR 

techniques in terms of super resolved picture quality and running time, reconstruction quality, 

generalisation capacity, and processing efficiency. 

6 Challenges and Future Scope 

As we seen in section 3 and 4 research on RSISR are positively done still there are some problems 

need further exploration. In this section we discuss some of the challenges and future work.  

6.1) Image Datasets 

Dataset is essential when it comes to self-learning equally as SR techniques for any research. In this 

field of research several datasets were designed but still it is required to develop more datasets 

focused on realistic image with more accuracy, images captured with different resolutions on same 

scene. 

6.2) SR Algorithms 

Still, it is not possible to apply RSISR algorithms to practical applications even though performance 

was increasing. As there are two major limitations of real-world images suffers from degradation 

problem therefore it is necessary to adapt RSISR models with ever changing real-world images. 

Other major limitation is with resources required are very highly configured for large model which 

is time consuming and also requires more storage space. As a result, lightweight SR model design 

and implementation are required. 

6.3) Evaluation Criteria 

PSNR and SSIM are the two most widely utilised SR assessment measures because to the difficulty 

of accurately measuring visual quality of super-resolved pictures. Due to this these metrics were 

unfit for implementing in practical applications. For RSISR, which is a critical and urgent research 

subject, more precise evaluation criteria should be devised. 

SCRS Conference Proceedings on Intelligent Systems (2021)

7



Preservation of smoothness in flat regions, textures should be enhanced in details, sharpening of 

edges all these points should be considered while evaluation. The challenge is to more accurately 

and simply measure visual quality. 

7 Conclusion  

Researchers are now focusing on real-world picture super resolution, but self-learning based image 

super resolution should be given greater attention. This paper looks at recent super resolution 

approaches (self-learning-based algorithms) for realistic pictures, datasets, and assessment metrics 

for RSISR model training and evaluation. Some challenges should be addressed immediately as 

discussed in previous section. This review will help to understand existing studies on RSISR, 

datasets and self-learning method with challenges. 
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